\begin{tabbing} I(\=$v$) where I($\alpha$) = \+ \\[0ex]wh\=en $x$ = $\alpha$ $<$ 0, $y$ = I($\alpha$+1).\+ \\[0ex]$d$($x$;$y$) \-\\[0ex]when $\alpha$ = 0. $b$when $w$ = $\alpha$ $>$ 0, $z$ = I($\alpha${-}1). $u$($w$;$z$)end where \-\\[0ex]\textbf{is Primitive} \end{tabbing}